Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Animal Ph...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Animal Physiology and Animal Nutrition
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phytate and phytase in fish nutrition

Authors: Kumar, Vikas; Sinha, Amit Kumar; Makkar, H.P.S.; De Boeck, Gudrun; Becker, K.;

Phytate and phytase in fish nutrition

Abstract

SummaryPhytate formed during maturation of plant seeds and grains is a common constituent of plant‐derived fish feed. Phytate‐bound phosphorus (P) is not available to gastric or agastric fish. A major concern about the presence of phytate in the aquafeed is its negative effect on growth performance, nutrient and energy utilization, and mineral uptake. Bound phytate‐P, can be effectively converted to available‐P by phytase. During the last decade, phytase has been used by aqua feed industries to enhance the growth performance, nutrient utilization and bioavailability of macro and micro minerals in fish and also to reduce the P pollution into the aquatic environment. Phytase activity is highly dependent on the pH of the fish gut. Unlike mammals, fish are either gastric or agastric, and hence, the action of dietary phytase varies from species to species. In comparison to poultry and swine production, the use of phytase in fish feed is still in an unproven stage. This review discusses effects of phytate on fish, dephytinisation processes, phytase and pathway for phytate degradation, phytase production systems, mode of phytase application, bioefficacy of phytase, effects of phytase on growth performance, nutrient utilization and aquatic environment pollution, and optimum dosage of phytase in fish diets.

Country
Belgium
Related Organizations
Keywords

6-Phytase, Phytic Acid, Veterinary medicine, Fishes, Animal Feed, Animals, Animal Nutritional Physiological Phenomena, Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    285
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
285
Top 1%
Top 10%
Top 10%
bronze