<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Seasonal measurements of net CO2 assimilation, leaf conductance and mesophyll conductance were made in the field on mature, fruiting and defruited Prunus persica L. Batsch trees. During early stages of fruit growth there were no significant differences in leaf gas exchange characteristics between fruiting and defruited trees. During the early part of the last stage of fruit growth, CO2 assimilation rates were 11–15% higher in fruiting trees than defruited trees. These increased assimilation rates corresponded with approximately 30% increases in leaf conductance and only minor changes in mesophyll conductances or leaf CO2 assimilation capacity as indicated by leaf nitrogen content. It is concluded that under the field conditions of this study the fruit effect on photosynthesis is primarily related to stomatal behavior.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 93 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |