<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 21118245
Fractal geometry, developed by B. Mandelbrot, has provided new key concepts necessary to the understanding and quantification of some aspects of pattern and shape randomness, irregularity, complexity and self-similarity. In the field of microscopy, fractals have profound implications in relation to the effects of magnification and scaling on morphology and to the methodological approaches necessary to measure self-similar structures. In this article are reviewed the fundamental concepts on which fractal geometry is based, their relevance to the microscopy field as well as a number of technical details that can help improving the robustness of morphological analyses when applied to microscopy problems.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 69 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |