Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Evolutionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Evolution
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Evolution
Article . 2003 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Evolution
Article . 2003 . Peer-reviewed
Data sources: Crossref
Evolution
Article . 2003
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

THE EVOLUTION OF VIRULENCE IN A PLANT VIRUS

Authors: Fernando García-Arenal; Fernando Escriu; Aurora Fraile;

THE EVOLUTION OF VIRULENCE IN A PLANT VIRUS

Abstract

The evolution of virulence is a rapidly growing field of research, but few reports deal with the evolution of virulence in natural populations of parasites. We present here an observational and experimental analysis of the evolution of virulence of the plant virus Cucumber mosaic virus (CMV) during an epidemic on tomato in eastern Spain. Three types of CMV isolates were found that caused in tomato plants either a systemic necrosis (N isolates), stunting and a severe reduction of leaf lamina (Y isolates), or stunting and leaf curl (A isolates). These phenotypes were due to the presence of satellite RNAs (satRNAs) necrogenic (in N isolates) or attenuative (in A isolates) of the symptoms caused by CMV without satRNA (Y isolates). For these three types of isolates, parameters of virulence and transmission were estimated experimentally. For virulence the ranking of isolates was N > Y > A, for transmissibility, Y > A > N. The predictions of theoretical models for the evolution of virulence were analyzed with these parameters and compared with observations from the field. A single-infection model predicted adequately the observed long-term evolution of the CMV population to intermediate levels of virulence. A coinfection model that considered competition between isolates with an effect on transmission explained the invasion of the CMV population by N isolates at the beginning of the epidemic, and its predictions also agreed with field data on the long-term evolution of the CMV population. An important conclusion from both models was that the density of the aphid vector's population is a major factor in the evolution of CMV virulence. This may be relevant for the design of control strategies for CMV-induced diseases.

Related Organizations
Keywords

Population Density, Solanum lycopersicum, Spain, RNA, Satellite, Models, Theoretical, Biological Evolution, Cucumovirus

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%
bronze