
doi: 10.1111/insr.12155
SummaryThe goal of statistical scale space analysis is to extract scale‐dependent features from noisy data. The data could be for example an observed time series or digital image in which case features in either different temporal or spatial scales would be sought. Since the 1990s, a number of statistical approaches to scale space analysis have been developed, most of them using smoothing to capture scales in the data, but other interpretations of scale have also been proposed. We review the various statistical scale space methods proposed and mention some of their applications.
applications, multi-scale, Statistics, curve fitting, smoothing, time series, image processing
applications, multi-scale, Statistics, curve fitting, smoothing, time series, image processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
