
doi: 10.1111/geb.12418
AbstractVeech (2013, Global Ecology and Biogeography, 22, 252–260) introduced a formula to calculate the probability of two species co‐occurring in various sites under the assumption of statistical independence between the two distributional patterns. He presented his model as a new procedure, a ‘pairwise approach’, different from analyses of whole presence–absence matrices to examine patterns of co‐occurrence. Here I show that: (1) Veech's method is identical to Fisher's exact test, a standard procedure for measuring the statistical association between two discrete variables; (2) in a broad sense, the pairwise approach is very similar to early analyses of spatial association, such as the one advanced by Forbes in 1907; (3) implicit in Veech's formula is a sampling scheme that is indistinguishable from well‐known matrix‐level null models that randomize the distribution of species among equiprobable sites; (4) pairwise co‐occurrence patterns can be analysed using any matrix‐level null model, so pairwise comparisons are not limited to using Veech's formula. The methodological distinction that Veech proposed between pairwise and matrix‐level approaches does not in fact exist, although the conceptual distinction between the two approaches is still a debated topic.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
