Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Expert Systemsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Expert Systems
Article . 2018 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A heuristic approach to the multicriteria design of IaaS cloud infrastructures for Big Data applications

Authors: Javier Del Ser; Javier Del Ser; Maria Arostegi; Ana I. Torre-Bastida; Miren Nekane Bilbao;

A heuristic approach to the multicriteria design of IaaS cloud infrastructures for Big Data applications

Abstract

AbstractThe rapid growth of new computing paradigms such as Cloud Computing and Big Data has unleashed great opportunities for companies to shift their business model towards a fully digital strategy. A major obstacle in this matter is the requirement of highly specialized ICT infrastructures that are expensive and difficult to manage. It is at this point that the IaaS (infrastructure as a service) model offers an efficient and cost‐affordable solution to supply companies with their required computing resources. In the Big Data context, it is often a hard task to design an optimal IaaS solution that meets user requirements. In this context, we propose a methodology to optimize the definition of IaaS cloud models for hosting Big Data platforms, following a threefold criterion: cost, reliability, and computing capacity. Specifically, the proposed methodology hinges on evolutionary heuristics in order to find IaaS configurations in the cloud that optimally balance such objectives. We also define measures to quantify the aforementioned metrics over a Big Data platform hosted within an IaaS cloud model. The proposed method is validated by using real information from three IaaS providers and three Big Data platforms. The obtained results provide an insightful input for system managers when initially designing cloud infrastructures for Big Data applications.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?