Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Medici...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Radboud Repository
Article . 2014
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Medicine & Child Neurology
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Callosal alterations in pyridoxine‐dependent epilepsy

Authors: Friedman, S.D.; Ishak, G.E.; Poliachik, S.L.; Poliakov, A.V.; Otto, R.K.; Shaw, D.W.; Willemsen, M.A.A.P.; +3 Authors

Callosal alterations in pyridoxine‐dependent epilepsy

Abstract

AimWhile there have been isolated reports of callosal morphology differences in pyridoxine‐dependent epilepsy (PDE), a rare autosomal disorder caused by ALDH7A1 gene mutations, no study has systematically evaluated callosal features in a large sample of patients. This study sought to overcome this knowledge gap.MethodSpanning a wide age range from birth to 48 years, corpus callosum morphology and cross‐sectional cerebral area were measured in 30 individuals with PDE (12 males, 18 females, median age 3.92y; 25th centile 0.27, 75th centile 15.25) compared to 30 age‐matched comparison individuals (11 males, 19 females, median age 3.85y; 25th centile 0.26, 75th centile 16.00). Individuals with PDE were also divided into age groups to evaluate findings across development. As delay to treatment may modulate clinical severity, groups were stratified by treatment delay (less than or greater than 2wks from birth).ResultsMarkedly reduced callosal area expressed as a ratio of mid‐sagittal cerebral area was observed for the entire group with PDE (p<0.001). Stratifying by age (<1y, 1–10y, >10y) demonstrated posterior abnormalities to be a consistent feature, with anterior regions increasingly involved across the developmental trajectory. Splitting the PDE group by treatment lag did not reveal overall or sub‐region callosal differences.InterpretationCallosal abnormalities are a common feature of PDE not explained by treatment lag. Future work utilizing tract‐based approaches to understand inter‐ and intra‐hemispheric connectivity patterns will help in the better understanding the structural aspects of this disease.

Keywords

Male, Epilepsy, Radboudumc 3: Disorders of movement DCMN: Donders Center for Medical Neuroscience, Aldehyde Dehydrogenase, Magnetic Resonance Imaging, Corpus Callosum, Case-Control Studies, Child, Preschool, Mutation, Humans, Female

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
bronze