
pmid: 38980989
Abstract How do teachers learn about what learners already know? How do learners aid teachers by providing them with information about their background knowledge and what they find confusing? We formalize this collaborative reasoning process using a hierarchical Bayesian model of pedagogy. We then evaluate this model in two online behavioral experiments ( N = 312 adults). In Experiment 1, we show that teachers select examples that account for learners' background knowledge, and adjust their examples based on learners' feedback. In Experiment 2, we show that learners strategically provide more feedback when teachers' examples deviate from their background knowledge. These findings provide a foundation for extending computational accounts of pedagogy to richer interactive settings.
Adult, Male, Young Adult, Teaching, Humans, Learning, Bayes Theorem, Female
Adult, Male, Young Adult, Teaching, Humans, Learning, Bayes Theorem, Female
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
