
doi: 10.1111/bmsp.12019
pmid: 23837882
In this paper we implement a Markov chain Monte Carlo algorithm based on the stochastic search variable selection method of George and McCulloch (1993) for identifying promising subsets of manifest variables (items) for factor analysis models. The suggested algorithm is constructed by embedding in the usual factor analysis model a normal mixture prior for the model loadings with latent indicators used to identify not only which manifest variables should be included in the model but also how each manifest variable is associated with each factor. We further extend the suggested algorithm to allow for factor selection. We also develop a detailed procedure for the specification of the prior parameters values based on the practical significance of factor loadings using ideas from the original work of George and McCulloch (1993). A straightforward Gibbs sampler is used to simulate from the joint posterior distribution of all unknown parameters and the subset of variables with the highest posterior probability is selected. The proposed method is illustrated using real and simulated data sets.
Psychological Tests, Stochastic Processes, Models, Statistical, Personality Inventory, Psychometrics, Markov Chains, Linear Models, Computer Simulation, Factor Analysis, Statistical, Monte Carlo Method, Algorithms
Psychological Tests, Stochastic Processes, Models, Statistical, Personality Inventory, Psychometrics, Markov Chains, Linear Models, Computer Simulation, Factor Analysis, Statistical, Monte Carlo Method, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
