Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biometricsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biometrics
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2020
Data sources: zbMATH Open
Biometrics
Article . 2021
versions View all 3 versions
addClaim

On Mendelian randomization analysis of case‐control study

On Mendelian randomization analysis of case-control study
Authors: Han Zhang; Jing Qin; Sonja I. Berndt; Demetrius Albanes; Lu Deng; Mitchell H. Gail; Kai Yu;

On Mendelian randomization analysis of case‐control study

Abstract

AbstractMendelian randomization (MR) analysis uses genotypes as instruments to estimate the causal effect of an exposure in the presence of unobserved confounders. The existing MR methods focus on the data generated from prospective cohort studies. We develop a procedure for studying binary outcomes under a case‐control design. The proposed procedure is built upon two working models commonly used for MR analyses and adopts a quasi‐empirical likelihood framework to address the ascertainment bias from case‐control sampling. We derive various approaches for estimating the causal effect and hypothesis testing under the empirical likelihood framework. We conduct extensive simulation studies to evaluate the proposed methods. We find that the proposed empirical likelihood estimate is less biased than the existing estimates. Among all the approaches considered, the Lagrange multiplier (LM) test has the highest power, and the confidence intervals derived from the LM test have the most accurate coverage. We illustrate the use of our method in MR analysis of prostate cancer case‐control data with vitamin D level as exposure and three single nucleotide polymorphisms as instruments.

Keywords

Male, Likelihood Functions, Biometry, case-control studies, Prostatic Neoplasms, empirical likelihood, Mendelian Randomization Analysis, Polymorphism, Single Nucleotide, Applications of statistics to biology and medical sciences; meta analysis, instrumental variable, Bias, Risk Factors, Case-Control Studies, Mendelian randomization, Confidence Intervals, Humans, Regression Analysis, causal effect, Computer Simulation, Prospective Studies, Vitamin D, Nonparametric hypothesis testing, Lagrange multiplier test

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!