Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biometricsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biometrics
Article . 2017 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
Biometrics
Article . 2018
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stagewise Generalized Estimating Equations with Grouped Variables

Authors: Jun Yan; Jun Yan; Kun Chen; Kun Chen; Gregory Vaughan; Robert H. Aseltine;

Stagewise Generalized Estimating Equations with Grouped Variables

Abstract

SummaryForward stagewise estimation is a revived slow-brewing approach for model building that is particularly attractive in dealing with complex data structures for both its computational efficiency and its intrinsic connections with penalized estimation. Under the framework of generalized estimating equations, we study general stagewise estimation approaches that can handle clustered data and non-Gaussian/non-linear models in the presence of prior variable grouping structure. As the grouping structure is often not ideal in that even the important groups may contain irrelevant variables, the key is to simultaneously conduct group selection and within-group variable selection, that is, bi-level selection. We propose two approaches to address the challenge. The first is a bi-level stagewise estimating equations (BiSEE) approach, which is shown to correspond to the sparse group lasso penalized regression. The second is a hierarchical stagewise estimating equations (HiSEE) approach to handle more general hierarchical grouping structure, in which each stagewise estimation step itself is executed as a hierarchical selection process based on the grouping structure. Simulation studies show that BiSEE and HiSEE yield competitive model selection and predictive performance compared to existing approaches. We apply the proposed approaches to study the association between the suicide-related hospitalization rates of the 15–19 age group and the characteristics of the school districts in the State of Connecticut.

Related Organizations
Keywords

Hospitalization, Suicide, Young Adult, Models, Statistical, Schools, Adolescent, Nonlinear Dynamics, Cluster Analysis, Humans, Computer Simulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
hybrid