
Summary An important goal of censored quantile regression is to provide reliable predictions of survival quantiles, which are often reported in practice to offer robust and comprehensive biomedical summaries. However, formal methods for evaluating and comparing working quantile regression models in terms of their performance in predicting survival quantiles have been lacking, especially when the working models are subject to model mis-specification. In this article, we proposes a sensible and rigorous framework to fill in this gap. We introduce and justify a predictive performance measure defined based on the check loss function. We derive estimators of the proposed predictive performance measure and study their distributional properties and the corresponding inference procedures. More importantly, we develop model comparison procedures that enable thorough evaluations of model predictive performance among nested or non-nested models. Our proposals properly accommodate random censoring to the survival outcome and the realistic complication of model mis-specification, and thus are generally applicable. Extensive simulations and a real data example demonstrate satisfactory performances of the proposed methods in real life settings.
Ridge regression; shrinkage estimators (Lasso), Models, Statistical, Censored data models, predictive performance, perturbation resampling, model comparisons, survival quantiles, Applications of statistics to biology and medical sciences; meta analysis, model mis-specification, Regression Analysis, Computer Simulation, censored quantile regression
Ridge regression; shrinkage estimators (Lasso), Models, Statistical, Censored data models, predictive performance, perturbation resampling, model comparisons, survival quantiles, Applications of statistics to biology and medical sciences; meta analysis, model mis-specification, Regression Analysis, Computer Simulation, censored quantile regression
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
