
Summary Functional data analysis involves the extension of familiar statistical procedures such as principal components analysis, linear modelling, and canonical correlation analysis to data where the raw observation xi is a function. An essential preliminary to a functional data analysis is often the registration or alignment of salient curve features by suitable monotone transformations hi of the argument t, so that the actual analyses are carried out on the values xi{hi(t)}. This is referred to as dynamic time warping in the engineering literature. In effect, this conceptualizes variation among functions as being composed of two aspects: horizontal and vertical, or domain and range. A nonparametric function estimation technique is described for identifying the smooth monotone transformations hi, and is illustrated by data analyses. A second-order linear stochastic differential equation is proposed to model these components of variation.
Density estimation, monotone functions, Inference from stochastic processes, dynamic time warping, stochastic time, geometric Brownian motion, function estimation, spline
Density estimation, monotone functions, Inference from stochastic processes, dynamic time warping, stochastic time, geometric Brownian motion, function estimation, spline
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 252 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
