
AbstractA class of log‐linear models, referred to as labelled graphical models (LGMs), is introduced for multinomial distributions. These models generalize graphical models (GMs) by employing partial conditional independence restrictions which are valid only in subsets of an outcome space. Theoretical results concerning model identifiability, decomposability and estimation are derived. A decision theoretical framework and a search algorithm for the identification of plausible models are described. Real data sets are used to illustrate that LGMs may provide a simpler interpretation of a dependence structure than GMs.
decomposability, Measures of association (correlation, canonical correlation, etc.), multivariate categorical data, partial conditional independence, Contingency tables, identifiability
decomposability, Measures of association (correlation, canonical correlation, etc.), multivariate categorical data, partial conditional independence, Contingency tables, identifiability
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
