Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Signal Processing
Article . 2015 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.1184/r1/...
Other literature type . 2015
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Discrete Signal Processing on Graphs: Sampling Theory

Authors: Rohan Varma; Siheng Chen; Aliaksei Sandryhaila; Jelena Kovacevic;

Discrete Signal Processing on Graphs: Sampling Theory

Abstract

We propose a sampling theory for signals that are supported on either directed or undirected graphs. The theory follows the same paradigm as classical sampling theory. We show that the perfect recovery is possible for graph signals bandlimited under the graph Fourier transform, and the sampled signal coefficients form a new graph signal, whose corresponding graph structure is constructed from the original graph structure, preserving frequency contents. By imposing a specific structure on the graph, graph signals reduce to finite discrete-time signals and the proposed sampling theory works reduces to classical signal processing. We further establish the connection to frames with maximal robustness to erasures as well as compressed sensing, and show how to choose the optimal sampling operator, how random sampling works on circulant graphs and Erdos-R ˝ enyi graphs, ´ and how to handle full-band graph signals by using graph filter banks. We validate the proposed sampling theory on the simulated datasets of Erdos-R ˝ enyi graphs and small-world graphs, and a ´ real-world dataset of online blogs. We show that for each case, the proposed sampling theory achieves perfect recovery with high probability. Finally, we apply the proposed sampling theory to semi-supervised classification of online blogs and digit images, where we achieve similar or better performance with fewer labeled samples compared to the previous work.

Related Organizations
Keywords

Social and Information Networks (cs.SI), FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), 90699 Electrical and Electronic Engineering not elsewhere classified, FOS: Electrical engineering, electronic engineering, information engineering, Computer Science - Social and Information Networks, Computer Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    482
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
482
Top 0.1%
Top 1%
Top 0.1%
Green
bronze