Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Reliability
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

Beating Random Test Case Prioritization

Authors: Zhi Quan Zhou 0001; Chen Liu; Tsong Yueh Chen; T. H. Tse; Willy Susilo;

Beating Random Test Case Prioritization

Abstract

Existing test case prioritization (TCP) techniques have limitations when applied to real-world projects, because these techniques require certain information to be made available before they can be applied. For example, the family of input-based TCP techniques are based on test case values or test script strings; other techniques use test coverage, test history, program structure, or requirements information. Existing techniques also cannot guarantee to always be more effective than random prioritization (RP) that does not have any precondition. As a result, RP remains the most applicable and most fundamental TCP technique. This article proposes an extremely simple, effective, and efficient way to prioritize test cases through the introduction of a dispersity metric. Our technique is as applicable as RP. We conduct empirical studies using 43 different versions of 15 real-world projects. Empirical results show that our technique is more effective than RP. Our algorithm has a linear computational complexity and, therefore, provides a practical solution to the problem of prioritizing very large test suites (such as those containing hundreds of thousands, or millions, of test cases), where the execution time of conventional nonlinear prioritization algorithms can be prohibitive. Our technique also provides a practical solution to TCP when neither input-based nor execution-based techniques are applicable due to lack of information.

Country
Australia
Keywords

Engineering, 000, test, random, beating, case, prioritization, Science and Technology Studies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!