
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script> Copyright policy )
 Copyright policy )Much of the recent work on modelling repairable systems involves Poisson processes with nonconstant intensity functions, viz, nonhomogeneous Poisson processes. Since times between failures are not identically distributed when the process is nonhomogeneous, it is not clear what concept should take the place of the mean time between failures in assessing the reliability of a repairable system. A number of alternate concepts can be found in the literature. We investigate the relationship between two of the most frequently considered alternatives: the reciprocal of the intensity function, and the mean waiting time from t until the next failure. Theorem 1 states a necessary and sufficient condition for the mean time until the next failure to be asymptotically proportional to the reciprocal of the intensity function. Some examples, including the familiar log-linear and power-intensity processes satisfy this condition.
Markov renewal processes, semi-Markov processes, reciprocal of the intensity function, mean waiting time, Reliability and life testing, nonhomogeneous Poisson processes, mean time between failures, log-linear process, power-intensity processes, repairable systems
Markov renewal processes, semi-Markov processes, reciprocal of the intensity function, mean waiting time, Reliability and life testing, nonhomogeneous Poisson processes, mean time between failures, log-linear process, power-intensity processes, repairable systems
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average | 
