
As a key approach to achieve energy efficiency in sensor networks, sensing coverage has been studied extensively in the literature. Researchers have designed many coverage protocols to provide various kinds of service guarantees on the network lifetime, coverage ratio and detection delay. While these protocols are effective, they are not flexible enough to meet multiple design goals simultaneously. In this paper, we propose a unified sensing coverage architecture for duty cycled wireless sensor networks, called uSense, which features three novel ideas: Asymmetric Architecture, Generic Switching and Global Scheduling. We propose asymmetric architecture based on the conceptual separation of switching from scheduling. Switching is efficiently supported in sensor nodes, while scheduling is done in a separated computational entity, where multiple scheduling algorithms are supported. As an instance, we propose a two-level global coverage algorithm, called uScan. At the first level, coverage is scheduled to activate different portions of an area. We propose an optimal scheduling algorithm to minimize area breach. At the second level, sets of nodes are selected to cover active portions. Importantly, we show the feasibility to obtain optimal set-cover results in linear time if the layout of areas satisfies certain conditions. Through extensive testbed and simulation evaluations, we demonstrate that uSense is a promising architecture to support flexible and efficient coverage in sensor networks.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
