Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Pattern Analysis and Machine Intelligence
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2014
License: CC BY NC SA
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

Person Re-Identification by Saliency Learning

Authors: Rui Zhao 0001; Wanli Ouyang; Xiaogang Wang 0001;

Person Re-Identification by Saliency Learning

Abstract

Human eyes can recognize person identities based on small salient regions, i.e. human saliency is distinctive and reliable in pedestrian matching across disjoint camera views. However, such valuable information is often hidden when computing similarities of pedestrian images with existing approaches. Inspired by our user study result of human perception on human saliency, we propose a novel perspective for person re-identification based on learning human saliency and matching saliency distribution. The proposed saliency learning and matching framework consists of four steps: (1) To handle misalignment caused by drastic viewpoint change and pose variations, we apply adjacency constrained patch matching to build dense correspondence between image pairs. (2) We propose two alternative methods, i.e. K-Nearest Neighbors and One-class SVM, to estimate a saliency score for each image patch, through which distinctive features stand out without using identity labels in the training procedure. (3) saliency matching is proposed based on patch matching. Matching patches with inconsistent saliency brings penalty, and images of the same identity are recognized by minimizing the saliency matching cost. (4) Furthermore, saliency matching is tightly integrated with patch matching in a unified structural RankSVM learning framework. The effectiveness of our approach is validated on the VIPeR dataset and the CUHK01 dataset. Our approach outperforms the state-of-the-art person re-identification methods on both datasets.

This manuscript has 14 pages with 25 figures, and a preliminary version was published in ICCV 2013

Keywords

FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    167
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
167
Top 1%
Top 1%
Top 1%
Green
bronze