
pmid: 26353316
Recent work in action recognition has exposed the limitations of methods which directly classify local features extracted from spatio-temporal video volumes. In opposition, encoding the actions' dynamics via generative dynamical models has a number of attractive features: however, using all-purpose distances for their classification does not necessarily deliver good results. We propose a general framework for learning distance functions for generative dynamical models, given a training set of labelled videos. The optimal distance function is selected among a family of pullback ones, induced by a parametrised automorphism of the space of models. We focus here on hidden Markov models and their model space, and design an appropriate automorphism there. Experimental results are presented which show how pullback learning greatly improves action recognition performances with respect to base distances.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
