
pmid: 21339528
Different materials reflect light in different ways, and this reflectance interacts with shape, lighting, and viewpoint to determine an object's image. Common materials exhibit diverse reflectance effects, and this is a significant source of difficulty for image analysis. One strategy for dealing with this diversity is to build computational tools that exploit reflectance symmetries, such as reciprocity and isotropy, that are exhibited by broad classes of materials. By building tools that exploit these symmetries, one can create vision systems that are more likely to succeed in real-world, non-Lambertian environments. In this paper, we develop a framework for representing and exploiting reflectance symmetries. We analyze the conditions for distinct surface points to have local view and lighting conditions that are equivalent under these symmetries, and we represent these conditions in terms of the geometric structure they induce on the Gaussian sphere and its abstraction, the projective plane. We also study the behavior of these structures under perturbations of surface shape and explore applications to both calibrated and uncalibrated photometric stereo.
projective geometry, Autocalibration, Photometric stereo, Projective geometry, photometric stereo, 600, autocalibrationx, Reflectance symmetry, 004
projective geometry, Autocalibration, Photometric stereo, Projective geometry, photometric stereo, 600, autocalibrationx, Reflectance symmetry, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
