
pmid: 24808466
Keerthi and Shevade (2007) proposed an efficient algorithm for constructing an approximate least angle regression least absolute shrinkage and selection operator solution path for logistic regression as a function of the regularization parameter. In this brief, their approach is extended to multinomial regression. We show that a brute-force approach leads to a multivariate approximation problem resulting in an infeasible path tracking algorithm. Instead, we introduce a noncanonical link function thereby: 1) repeatedly reusing the univariate approximation of Keerthi and Shevade, and 2) producing an optimization objective with a block-diagonal Hessian. We carry out an empirical study that shows the computational efficiency of the proposed technique. A MATLAB implementation is available from the author upon request.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
