Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Université de Franch...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Magnetics
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

Development of a Magneto-Mechanical Bench and Experimental Characterization of Magneto-Rheological Elastomers

Authors: Maxime Savary; Svenja Hermann; Christophe Espanet; Valentin Preault; Gael Chevallier; Pauline Butaud; Jean-Francois Manceau;

Development of a Magneto-Mechanical Bench and Experimental Characterization of Magneto-Rheological Elastomers

Abstract

International audience ; Magneto-rheological elastomers belong to the class of smart materials whose mechanical properties can be controlled by an external magnetic field. These materials can be integrated into mechatronic systems and submitted to multiple loadings such as temperature, mechanical stress and magnetic field. Thus, the present work is dedicated to the development of a magneto-mechanical bench and on first experimental characterizations of hard magneto-rheological elastomers taking multiphysics coupling into account. Regarding the mechanical loading, the experimental setup is able to create a uniaxial tensile stress in case of low strain (< 1%) without friction effect. In regards to the magnetic loading, a magnetic circuit made of a strong permanent magnet has been designed to impose a variable and a homogeneous magnetic field strength up to 41 kA/m. Experimental analysis has been performed on silicone rubber filled with 36%vol. of NdFeB particles. The purpose was first to investigate the evolution of the Young modulus with or without magnetic field. Results obtained from measurements show that the developed test bench is able to depict the mechanical behavior and phenomena linked to rubber-like material.

Country
France
Related Organizations
Keywords

[PHYS.MECA]Physics [physics]/Mechanics [physics], [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics, [SPI.MAT]Engineering Sciences [physics]/Materials, 620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green