Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Knowledge and Data Engineering
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

Interactive Bike Lane Planning using Sharing Bikes' Trajectories

Authors: Tianfu He; Jie Bao 0003; Sijie Ruan; Ruiyuan Li; Yanhua Li; Hui He; Yu Zheng 0004;

Interactive Bike Lane Planning using Sharing Bikes' Trajectories

Abstract

Cycling as a green transportation mode has been promoted by many governments all over the world. As a result, constructing effective bike lanes has become a crucial task to promote the cycling life style, as well-planned bike lanes can reduce traffic congestions and safety risks. Unfortunately, existing trajectory mining approaches for bike lane planning do not consider one or more key realistic government constraints: 1) budget limitations, 2) construction convenience, and 3) bike lane utilization. In this paper, we propose a data-driven approach to develop bike lane construction plans based on the large-scale real world bike trajectory data collected from Mobike, a station-less bike sharing system. We enforce these constraints to formulate our problem and introduce a flexible objective function to tune the benefit between coverage of users and the length of their trajectories. We prove the NP-hardness of the problem and propose greedy-based heuristics to address it. To improve the efficiency of the bike lane planning system for the urban planner, we propose a novel trajectory indexing structure and deploy the system based on a parallel computing framework (Storm) to improve the system's efficiency. Finally, extensive experiments and case studies are provided to demonstrate the system efficiency and effectiveness.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!