
handle: 20.500.14243/344715 , 11568/1014118
Web search engines are composed by thousands of query processing nodes, i.e., servers dedicated to process user queries. Such many servers consume a significant amount of energy, mostly accountable to their CPUs, but they are necessary to ensure low latencies, since users expect sub-second response times (e.g., 500 ms). However, users can hardly notice response times that are faster than their expectations. Hence, we propose the Predictive Energy Saving Online Scheduling Algorithm ( PESOS) to select the most appropriate CPU frequency to process a query on a per-core basis. PESOS aims at process queries by their deadlines, and leverage high-level scheduling information to reduce the CPU energy consumption of a query processing node. PESOS bases its decision on query efficiency predictors, estimating the processing volume and processing time of a query. We experimentally evaluate PESOS upon the TREC ClueWeb09B collection and the MSN2006 query log. Results show that PESOS can reduce the CPU energy consumption of a query processing node up to similar to 48 percent compared to a system running at maximum CPU core frequency. PESOS outperforms also the best state-of-the-art competitor with a similar to 20 percent energy saving, while the competitor requires a fine parameter tuning and it may incurs in uncontrollable latency violations.
Energy consumption, web search engines, CPU dynamic voltage and frequency scaling; Energy consumption; web search engines, CPU dynamic voltage and frequency scaling
Energy consumption, web search engines, CPU dynamic voltage and frequency scaling; Energy consumption; web search engines, CPU dynamic voltage and frequency scaling
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
