
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 11541.2/123932
Uncovering causal relationships in data is a major objective of data analytics. Causal relationships are normally discovered with designed experiments, e.g. randomised controlled trials, which, however are expensive or infeasible to be conducted in many cases. Causal relationships can also be found using some well designed observational studies, but they require domain experts' knowledge and the process is normally time consuming. Hence there is a need for scalable and automated methods for causal relationship exploration in data. Classification methods are fast and they could be practical substitutes for finding causal signals in data. However, classification methods are not designed for causal discovery and a classification method may find false causal signals and miss the true ones. In this paper, we develop a causal decision tree where nodes have causal interpretations. Our method follows a well established causal inference framework and makes use of a classic statistical test. The method is practical for finding causal signals in large data sets.
FOS: Computer and information sciences, potential outcome model, Artificial Intelligence (cs.AI), partial association, Computer Science - Artificial Intelligence, causal relationship, decision tree
FOS: Computer and information sciences, potential outcome model, Artificial Intelligence (cs.AI), partial association, Computer Science - Artificial Intelligence, causal relationship, decision tree
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
