Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Tampere University: ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Intelligent Transportation Systems
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Efficient and Scalable Simulation Model for Autonomous Vehicles With Economical Hardware

Authors: Muhammad Sajjad; Muhammad Irfan; Khan Muhammad; Javier Del Ser; Javier Sanchez-Medina; Sergey Andreev; Weiping Ding; +1 Authors

An Efficient and Scalable Simulation Model for Autonomous Vehicles With Economical Hardware

Abstract

Autonomous vehicles rely on sophisticated hardware and software technologies for acquiring holistic awareness of their immediate surroundings. Deep learning methods have effectively equipped modern self-driving cars with high levels of such awareness. However, their application requires high-end computational hardware, which makes utilization infeasible for the legacy vehicles that constitute most of today’s automotive industry. Hence, it becomes inherently challenging to achieve high performance while at the same time maintaining adequate computational complexity. In this paper, a monocular vision and scalar sensor-based model car is designed and implemented to accomplish autonomous driving on a specified track by employing a lightweight deep learning model. It can identify various traffic signs based on a vision sensor as well as avoid obstacles by using an ultrasonic sensor. The developed car utilizes a single Raspberry Pi as its computational unit. In addition, our work investigates the behavior of economical hardware used to deploy deep learning models. In particular, we herein propose a novel, computationally efficient, and cost-effective approach. The proposed system can serve as a platform to facilitate the development of economical technologies for autonomous vehicles that can be used as part of intelligent transportation or advanced driver assistance systems. The experimental results indicate that this model can achieve realtime response on a resource-constrained device without significant overheads, thus making it a suitable candidate for autonomous driving in current intelligent transportation systems.

1,591

6,492

1732

1718

SCIE

Q1

Country
Finland
Keywords

Scalar-visual sensor, 213 Electronic, automation and communications engineering, electronics, Raspberry Pi, Intelligent transportation systems, 213, 004, 332703 Sistemas de transito urbano, 120326 Simulación, Autonomous driving

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Green