<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10553/73786
Autonomous vehicles rely on sophisticated hardware and software technologies for acquiring holistic awareness of their immediate surroundings. Deep learning methods have effectively equipped modern self-driving cars with high levels of such awareness. However, their application requires high-end computational hardware, which makes utilization infeasible for the legacy vehicles that constitute most of today’s automotive industry. Hence, it becomes inherently challenging to achieve high performance while at the same time maintaining adequate computational complexity. In this paper, a monocular vision and scalar sensor-based model car is designed and implemented to accomplish autonomous driving on a specified track by employing a lightweight deep learning model. It can identify various traffic signs based on a vision sensor as well as avoid obstacles by using an ultrasonic sensor. The developed car utilizes a single Raspberry Pi as its computational unit. In addition, our work investigates the behavior of economical hardware used to deploy deep learning models. In particular, we herein propose a novel, computationally efficient, and cost-effective approach. The proposed system can serve as a platform to facilitate the development of economical technologies for autonomous vehicles that can be used as part of intelligent transportation or advanced driver assistance systems. The experimental results indicate that this model can achieve realtime response on a resource-constrained device without significant overheads, thus making it a suitable candidate for autonomous driving in current intelligent transportation systems.
1,591
6,492
1732
1718
SCIE
Q1
Scalar-visual sensor, 213 Electronic, automation and communications engineering, electronics, Raspberry Pi, Intelligent transportation systems, 213, 004, 332703 Sistemas de transito urbano, 120326 Simulación, Autonomous driving
Scalar-visual sensor, 213 Electronic, automation and communications engineering, electronics, Raspberry Pi, Intelligent transportation systems, 213, 004, 332703 Sistemas de transito urbano, 120326 Simulación, Autonomous driving
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |