Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Information Theory
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Channel Simulation: Finite Blocklengths and Broadcast Channels

Authors: Michael X. Cao; Navneeth Ramakrishnan; Mario Berta; Marco Tomamichel;

Channel Simulation: Finite Blocklengths and Broadcast Channels

Abstract

We study channel simulation under common randomness assistance in the finite-blocklength regime and identify the smooth channel max-information as a linear program one-shot converse on the minimal simulation cost for fixed error tolerance. We show that this one-shot converse can be achieved exactly using no-signaling-assisted codes, and approximately achieved using common randomness-assisted codes. Our one-shot converse thus takes on an analogous role to the celebrated meta-converse in the complementary problem of channel coding, and we find tight relations between these two bounds. We asymptotically expand our bounds on the simulation cost for discrete memoryless channels, leading to the second-order as well as the moderate deviation rate expansion, which can be expressed in terms of the channel capacity and channel dispersion known from noisy channel coding. Our bounds imply the well-known fact that the optimal asymptotic rate of one channel to simulate another under common randomness assistance is given by the ratio of their respective capacities. Additionally, our higher-order asymptotic expansion shows that this reversibility falls apart in the second order. Our techniques extend to discrete memoryless broadcast channels. In stark contrast to the elusive broadcast channel capacity problem, we show that the reverse problem of broadcast channel simulation under common randomness assistance allows for an efficiently computable single-letter characterization of the asymptotic rate region in terms of the broadcast channel's multipartite mutual information.

38 pages, 6 figures

Keywords

FOS: Computer and information sciences, Quantum Physics, Computer Science - Information Theory, Information Theory (cs.IT), FOS: Physical sciences, Quantum Physics (quant-ph)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green