<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We study channel simulation under common randomness assistance in the finite-blocklength regime and identify the smooth channel max-information as a linear program one-shot converse on the minimal simulation cost for fixed error tolerance. We show that this one-shot converse can be achieved exactly using no-signaling-assisted codes, and approximately achieved using common randomness-assisted codes. Our one-shot converse thus takes on an analogous role to the celebrated meta-converse in the complementary problem of channel coding, and we find tight relations between these two bounds. We asymptotically expand our bounds on the simulation cost for discrete memoryless channels, leading to the second-order as well as the moderate deviation rate expansion, which can be expressed in terms of the channel capacity and channel dispersion known from noisy channel coding. Our bounds imply the well-known fact that the optimal asymptotic rate of one channel to simulate another under common randomness assistance is given by the ratio of their respective capacities. Additionally, our higher-order asymptotic expansion shows that this reversibility falls apart in the second order. Our techniques extend to discrete memoryless broadcast channels. In stark contrast to the elusive broadcast channel capacity problem, we show that the reverse problem of broadcast channel simulation under common randomness assistance allows for an efficiently computable single-letter characterization of the asymptotic rate region in terms of the broadcast channel's multipartite mutual information.
38 pages, 6 figures
FOS: Computer and information sciences, Quantum Physics, Computer Science - Information Theory, Information Theory (cs.IT), FOS: Physical sciences, Quantum Physics (quant-ph)
FOS: Computer and information sciences, Quantum Physics, Computer Science - Information Theory, Information Theory (cs.IT), FOS: Physical sciences, Quantum Physics (quant-ph)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |