Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Information Theory
Article . 2010 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Mathematical Theory of Energy Efficient Neural Computation and Communication

Authors: Toby Berger; William B. Levy;

A Mathematical Theory of Energy Efficient Neural Computation and Communication

Abstract

A neuroscience-based mathematical model of how a neuron stochastically processes data and communicates information is introduced and analyzed. Call the neuron in question 'neuron j", or just "j". The information j transmits approximately describes the time-varying intensity of the excitation j is continuously experiencing from neural spike trains delivered to its synapses by thousands of other neurons. Neuron j "encodes" this excitation history into a sequence of time instants at which it generates neural spikes of its own. By propagating these spikes along its axon, j acts as a multiaccess, partially degraded broadcast channel with thousands of input and output terminals that employs a time-continuous version of pulse position modulation. The mathematical model features three parameters, m, ?, and b, which largely characterize j as an engine of computation and communication. Each set of values of these parameters corresponds to a long term maximization of the bits j conveys to its targets per joule it expends doing so, which is achieved by distributing the random duration between successive spikes j generates according to a gamma pdf with parameters ? and b and distributing b/A according to a beta probability density with parameters ? and m-?, where A is the random intensity of the effectively Poisson process of spikes that arrive to the union of all of j's synapses at a randomly chosen time instant.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?