
pmid: 29993806
Extracting the background from a video in the presence of various moving patterns is the focus of several background-initialization approaches. To model the scene background using rank-one matrices, this paper proposes a background-initialization technique that relies on the singular-value decomposition (SVD) of spatiotemporally extracted slices from the video tensor. The proposed method is referred to as spatiotemporal slice-based SVD (SS-SVD). To determine the SVD components that best model the background, a depth analysis of the computation of the left/right singular vectors and singular values is performed, and the relationship with tensor-tube fibers is determined. The analysis proves that a rank-1 matrix extracted from the first left and right singular vectors and singular value represents an efficient model of the scene background. The performance of the proposed SS-SVD method is evaluated using 93 complex video sequences of different challenges, and the method is compared with state-of-the-art tensor/matrix completion-based methods, statistical-based methods, search-based methods, and labeling-based methods. The results not only show better performance over most of the tested challenges, but also demonstrate the capability of the proposed technique to solve the background-initialization problem in a less computational time and with fewer frames.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
