
This paper presents an adaptive demosaicing algorithm. Missing green samples are first estimated based on the variances of the color differences along different edge directions. The missing red and blue components are then estimated based on the interpolated green plane. This algorithm can effectively preserve the details in texture regions and, at the same time, it can significantly reduce the color artifacts. As compared with the latest demosaicing algorithms, the proposed algorithm produces the best average demosaicing performance both objectively and subjectively.
Bayer sampling, Digital camera, Image Interpretation, Computer-Assisted, Color, Information Storage and Retrieval, Colorimetry, Color demosaicing, Image Enhancement, Color filter array, Algorithms, Interpolation
Bayer sampling, Digital camera, Image Interpretation, Computer-Assisted, Color, Information Storage and Retrieval, Colorimetry, Color demosaicing, Image Enhancement, Color filter array, Algorithms, Interpolation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 153 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
