Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2004
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Image Processing
Article . 2004 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Identification of Humans Using Gait

Authors: Amit A. Kale; Aravind Sundaresan; A. N. Rajagopalan 0001; Naresh P. Cuntoor; Amit K. Roy-Chowdhury; Volker Krüger; Rama Chellappa;

Identification of Humans Using Gait

Abstract

We propose a view-based approach to recognize humans from their gait. Two different image features have been considered: the width of the outer contour of the binarized silhouette of the walking person and the entire binary silhouette itself. To obtain the observation vector from the image features, we employ two different methods. In the first method, referred to as the indirect approach, the high-dimensional image feature is transformed to a lower dimensional space by generating what we call the frame to exemplar (FED) distance. The FED vector captures both structural and dynamic traits of each individual. For compact and effective gait representation and recognition, the gait information in the FED vector sequences is captured in a hidden Markov model (HMM). In the second method, referred to as the direct approach, we work with the feature vector directly (as opposed to computing the FED) and train an HMM. We estimate the HMM parameters (specifically the observation probability B) based on the distance between the exemplars and the image features. In this way, we avoid learning high-dimensional probability density functions. The statistical nature of the HMM lends overall robustness to representation and recognition. The performance of the methods is illustrated using several databases.

Country
Denmark
Keywords

Models, Statistical, Video Recording, Reproducibility of Results, Signal Processing, Computer-Assisted, Image Enhancement, Models, Biological, Sensitivity and Specificity, Pattern Recognition, Automated, Artificial Intelligence, Subtraction Technique, Image Interpretation, Computer-Assisted, Task Performance and Analysis, Humans, Computer Simulation, Gait, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    440
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
440
Top 1%
Top 0.1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!