<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Global Navigation Satellite Systems (GNSS) are fundamental in ubiquitously providing position and time to a wide gamut of systems. Jamming remains a realistic threat in many deployment settings, civilian and tactical. Specifically, in Unmanned Aerial Vehicles (UAVs) sustained denial raises safety critical concerns. This work presents a strategy that allows detection, localization, and classification both in the frequency and time domain of interference signals harmful to navigation. A high-performance Vertical Take Off and Landing (VTOL) UAV with a single antenna and a commercial GNSS receiver is used to geolocate and characterize RF emitters at long range, to infer the navigation impairment. Raw IQ baseband snapshots from the GNSS receiver make the application of spectral correlation methods possible without extra software-defined radio payload, paving the way to spectrum identification and monitoring in airborne platforms, aiming at RF situational awareness. Live testing at Jammertest, in Norway, with portable, commercially available GNSS multi-band jammers demonstrates the ability to detect, localize, and characterize harmful interference. Our system pinpointed the position with an error of a few meters of the transmitter and the extent of the affected area at long range, without entering the denied zone. Additionally, further spectral content extraction is used to accurately identify the jammer frequency, bandwidth, and modulation scheme based on spectral correlation techniques.
Signal Processing (eess.SP), Reglerteknik, Signal Processing, FOS: Electrical engineering, electronic engineering, information engineering, Signalbehandling, Control Engineering, Electrical Engineering and Systems Science - Signal Processing
Signal Processing (eess.SP), Reglerteknik, Signal Processing, FOS: Electrical engineering, electronic engineering, information engineering, Signalbehandling, Control Engineering, Electrical Engineering and Systems Science - Signal Processing
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |