
A standard wavelet multiresolution analysis can be defined via a sequence of projection operators onto a monotone sequence of closed vector subspaces possessing suitable invariance properties. We propose an extension of this framework in which the linear projection operators are replaced by nonlinear retractions onto convex sets. These retractions are chosen so as to provide a recursive, monotone signal approximation scheme. Numerical simulations are also provided.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
