
Nonnegative matrix factorization (NMF), which aims at obtaining the nonnegative low-dimensional representation of data, has received wide attention. To obtain more effective nonnegative discriminant bases from the original NMF, in this paper, a novel method called nonnegative discriminant matrix factorization (NDMF) is proposed for image classification. NDMF integrates the nonnegative constraint, orthogonality, and discriminant information in the objective function. NDMF considers the incoherent information of both factors in standard NMF and is proposed to enhance the discriminant ability of the learned base matrix. NDMF projects the low-dimensional representation of the subspace of the base matrix to regularize the NMF for discriminant subspace learning. Based on the Euclidean distance metric and the generalized Kullback–Leibler (KL) divergence, two kinds of iterative algorithms are presented to solve the optimization problem. The between- and within-class scatter matrices are divided into positive and negative parts for the update rules and the proofs of the convergence are also presented. Extensive experimental results demonstrate the effectiveness of the proposed method in comparison with the state-of-the-art discriminant NMF algorithms.
Technology, REPRESENTATION, Science & Technology, PARTS, Nonnegative Matrix Factorization (Nmf), MAXIMUM MARGIN CRITERION, IMAGE, Discriminative Ability, FACE-RECOGNITION, Face Recognition, Engineering, Electrical & Electronic, OBJECTS, Maximum Margin Criterion (Mmc)
Technology, REPRESENTATION, Science & Technology, PARTS, Nonnegative Matrix Factorization (Nmf), MAXIMUM MARGIN CRITERION, IMAGE, Discriminative Ability, FACE-RECOGNITION, Face Recognition, Engineering, Electrical & Electronic, OBJECTS, Maximum Margin Criterion (Mmc)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 46 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
