Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Circuits and Systems for Video Technology
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

Nonnegative Discriminant Matrix Factorization

Authors: Yuwu Lu; Zhihui Lai 0001; Yong Xu 0001; Xuelong Li 0001; David Zhang 0001; Chun Yuan;

Nonnegative Discriminant Matrix Factorization

Abstract

Nonnegative matrix factorization (NMF), which aims at obtaining the nonnegative low-dimensional representation of data, has received wide attention. To obtain more effective nonnegative discriminant bases from the original NMF, in this paper, a novel method called nonnegative discriminant matrix factorization (NDMF) is proposed for image classification. NDMF integrates the nonnegative constraint, orthogonality, and discriminant information in the objective function. NDMF considers the incoherent information of both factors in standard NMF and is proposed to enhance the discriminant ability of the learned base matrix. NDMF projects the low-dimensional representation of the subspace of the base matrix to regularize the NMF for discriminant subspace learning. Based on the Euclidean distance metric and the generalized Kullback–Leibler (KL) divergence, two kinds of iterative algorithms are presented to solve the optimization problem. The between- and within-class scatter matrices are divided into positive and negative parts for the update rules and the proofs of the convergence are also presented. Extensive experimental results demonstrate the effectiveness of the proposed method in comparison with the state-of-the-art discriminant NMF algorithms.

Country
China (People's Republic of)
Related Organizations
Keywords

Technology, REPRESENTATION, Science & Technology, PARTS, Nonnegative Matrix Factorization (Nmf), MAXIMUM MARGIN CRITERION, IMAGE, Discriminative Ability, FACE-RECOGNITION, Face Recognition, Engineering, Electrical & Electronic, OBJECTS, Maximum Margin Criterion (Mmc)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!