Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Rennes 1
Article . 2021
Data sources: HAL-Rennes 1
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Communications
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

A Novel Index Modulation Dimension Based on Filter Domain: Filter Shapes Index Modulation

Authors: Majed Saad; Jacques Palicot; Faouzi Bader; Ali Chamas Al Ghouwayel; Hussein Hijazi;

A Novel Index Modulation Dimension Based on Filter Domain: Filter Shapes Index Modulation

Abstract

A novel domain for Index Modulation (IM) named “Filter Domain” is proposed. This new domain generalizes many existing modulations and IM domains. In addition, a novel scheme “Filter Shape Index Modulation” (FSIM) is proposed. This FSIM scheme allows a higher Spectral Efficiency (SE) gain than the time and frequency IM dimensions in Single-Input Single-Output (SISO) systems. In the FSIM system, the bit-stream is mapped using an Amplitude Phase Modulation (APM) as QAM or PSK, and an index of a filter-shape changing at the symbol rate. This filter shape, being changed at each symbol, enables a SE gain in SISO system without sacrificing any time or frequency resources. Compared to an equivalent 8QAM and 16QAM schemes and at the same SE, the FSIM with QPSK using 2 and 4 non-optimal filter shapes achieves a gain of 3.8 dB and 1.7 dB respectively at BER= 10−4, and this superiority is maintained in frequency selective fading channel compared to equivalent SISO-IM schemes. A low complexity detection scheme, approaching the maximum likelihood detector performance, is proposed along with a full performance characterization in terms of theoretical probability of filter index error and BER lower bound. Finally, FSIM can achieve better spectral and energy efficiencies when a filter bank and an ISI cancellation technique are optimally designed.

Country
France
Keywords

joint maximum likelihood detector, SISO, Filter Shape Index Modulation (FSIM), spectral efficiency, Index Modulation (IM), Filter Domain (FD), Filter Index Modulation, matched filter detector, pulse-shaping filter, [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing, energy efficiency, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
Green
bronze