
In the last years we have seen several studies showing the potential of mobile network data to reconstruct activity and mobility patterns of the population. These data sources allow continuous monitoring of the population with a higher degree of spatial and temporal resolution and at a lower cost compared with traditional methods. However, for certain applications, the spatial resolution of these data sources is still not enough since it typically provides a spatial resolution of hundreds of meters in urban areas and of few kilometers in rural areas. In this article, we fill this gap by proposing a methodology that utilises GPS data from the usage of different applications in mobile devices. This approach improves the spatial precision in the location of activities, previously identified with the mobile network data.
travel demand models, Telecomunicaciones, location of activities, mobile phone data, Matemáticas, Transporte, Application usage data, Big Data analytics.
travel demand models, Telecomunicaciones, location of activities, mobile phone data, Matemáticas, Transporte, Application usage data, Big Data analytics.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
