
We present a pivot-free deterministic algorithm for the inversion of block matrices. The method is based on the Moore-Penrose inverse and is applicable over certain general classes of rings. This improves on previous methods that required at least one invertible on-diagonal block, and that otherwise required row- or column-based pivoting, disrupting the block structure. Our method is applicable to any invertible matrix and does not require any particular blocks to invertible. This is achieved at the cost of two additional specialized matrix multiplications and, in some cases, requires the inversion to be performed in an extended ring.
block matrices, Linear algebra, matrix inverse, 004, 510, ddc: ddc:004
block matrices, Linear algebra, matrix inverse, 004, 510, ddc: ddc:004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
