
Based on Hamiltonian energy theory, this paper proposes a pitch angle and excitation torque controller for the wind energy conversion systems (WECS), such that the closed-loop system can achieve its stability. Furthermore, in the presence of disturbances, the closed-loop system is finite-gain L2 stable by the Hamiltonian controller. The Hamiltonian energy approach provides us a physical insight and gives a new way to the controller design. The simulations are illustrated to show that the proposed method is effective.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
