Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two-stage estimation after parameter selection

Authors: Tirza Routtenberg;

Two-stage estimation after parameter selection

Abstract

In many practical multiparameter estimation problems, no a-priori information exists regarding which parameters are more relevant within a group of candidate unknown parameters. This paper considers the estimation of a selected “parameter of interest”, where the selection is conducted according to a data-based selection rule, Ψ. The selection process introduces a selection bias and creates coupling between decoupled parameters. We propose a two-stage data-acquisition approach that can remove the selection bias and improve estimation performance. We derive a two-stage Cramer-Rao-type bound on the post-selection mean squared error (PSMSE) of any Ψ-unbiased estimator, where the Ψ-unbiasedness is in the Lehmann sense. In addition, we present the two-stage post-selection maximum-likelihood (PSML) estimator. The proposed Ψ-Cramer-Rao bound (CRB), PSML estimator and other existing estimators are examined for a linear Gaussian model, which is widely used in clinical research.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!