
Hash functions play an important role in modern cryptography. They are widely used to provide services of data integrity and authentication. The hash algorithms are based on performing a number of complex operations on the input data that require a significant amount of computing resources especially when the input data are huge. Thus, hardware implementation is far more suitable, for security and performances execution issues, compared to the corresponding software implementations. Hash functions perform internal operations in an iterative fashion, which open the possibility of exploring several implementation strategies. In this paper, we are concerned by optimizing the hardware implementation of the SHA-256 algorithm on virtex-5 Xilinx FPGA. Our main contribution is to design a compact SHA-256 core and to speed-up its critical paths. These are respectively seven and six words addition. The CS (Carry Save) representation is advantageously used to overcome the carry propagation, until the last addition. Special efforts were made to design, at the LUT level, the two components (compressors 7:2 and 6:2) which are the key features of our design; their delay is data path independent and equivalent to the delay of two LUT6. The resulting architecture is compact and operates at 170 MHz with throughput of 1.36 Gbps.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
