Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Orthogonal Eigenvector Matrix of the Laplacian

Authors: Xiangrong Wang; Piet Van Mieghem;

Orthogonal Eigenvector Matrix of the Laplacian

Abstract

The orthogonal eigenvector matrix Z of the Laplacian matrix of a graph with N nodes is studied rather than its companion X of the adjacency matrix, because for the Laplacian matrix, the eigenvector matrix Z corresponds to the adjacency companion X of a regular graph, whose properties are easier. In particular, the column sum vector of Z (which we call the fundamental weight vector w) is, for a connected graph, proportional to the basic vector eN = (0,0,, 1), so that more information about the specfics of the graph is contained in the row sum of Z (which we call the dual fundamental weight vector φ). Since little is known about Z (or X), we have tried to understand simple properties of Z such as the number of zeros, the sum of elements, the maximum and minimum element and properties of φ. For the particular class of Erdős-Renyi random graphs, we found that a product of a Gaussian and a super-Gaussian distribution approximates accurately the distribution of φU, a uniformly at random chosen component of the dual fundamental weight vector of Z.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!