
The orthogonal eigenvector matrix Z of the Laplacian matrix of a graph with N nodes is studied rather than its companion X of the adjacency matrix, because for the Laplacian matrix, the eigenvector matrix Z corresponds to the adjacency companion X of a regular graph, whose properties are easier. In particular, the column sum vector of Z (which we call the fundamental weight vector w) is, for a connected graph, proportional to the basic vector eN = (0,0,, 1), so that more information about the specfics of the graph is contained in the row sum of Z (which we call the dual fundamental weight vector φ). Since little is known about Z (or X), we have tried to understand simple properties of Z such as the number of zeros, the sum of elements, the maximum and minimum element and properties of φ. For the particular class of Erdős-Renyi random graphs, we found that a product of a Gaussian and a super-Gaussian distribution approximates accurately the distribution of φU, a uniformly at random chosen component of the dual fundamental weight vector of Z.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
