Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Self-powered optical sensor systems

Authors: Wu, H.; Emadi, A.; Graaf, G. de; Leijtens, J.A.P.; Wolffenbuttel, R.F.;

Self-powered optical sensor systems

Abstract

A 0.35 µm CMOS process has been used for on-chip integration of a sun sensor composed of a 2×2 photodiode array and a current-to-voltage amplifier. Unlike conventional sun sensors, a shade profile proportional to the angle of incidence of incoming light is projected onto the photodiodes. This concept enables an autonomous self-powered optical system with two the main functions (electrical power generation for the amplifier and the optical position measurement) implemented in the photodiodes by having these operated simultaneously in the photovoltaic and photocurrent mode respectively. The low-power current-to-voltage converter is used to readout the differential photocurrent, while powered from the photodiodes at minimum supply voltage level. Test structures have been designed, fabricated and used for validation of the concept.

Related Organizations
Keywords

Photodiode arrays, Photocurrents, Electrical power generation, Microsystems, Test structure, Photodiode, On-chip integration, Voltage amplifiers, Angle of Incidence, Self-powered, Optical systems, Self-powering, Position measurement, Optical system, Voltage regulators, Photodiodes, Optical position measurements, Piezoelectric transducers, Energy scavenging, Sun, Supply voltages, Sun sensor, CMOS processs, Low Power, Incoming light, Optical sensors, Solid-state sensors, Actuators

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!