
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Handling stream data or temporal data is a difficult task and brings out a lot of problems to classical learning algorithms as the decision tree construction algorithms. In that context, incremental algorithms have been proposed but they often lie on the frequent reconstruction of the decision tree when this one provides a high number of misclassified examples. In this paper, we proposed a new algorithm to incrementally tune a fuzzy decision tree (FDT) that limit the number of reconstructions of the tree. That algorithm takes benefit of the fuzzy classification provided by a FDT to introduce a local tuning of the internal nodes of the FDT and avoid a complete reconstruction of the tree.
[INFO] Computer Science [cs]
[INFO] Computer Science [cs]
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).  | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.  | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).  | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.  | Average | 
