
Nonnegative tensor factorization (NTF) is a recent multiway (multilinear) extension of negative matrix factorization (NMF), where nonnegativity constraints are mainly imposed on CANDECOMP/PARAFAC model and recently, also, on Tucker model. Nonnegative tensor factorization algorithms have many potential applications, including multiway clustering, multi-sensory or multidimensional data analysis and nonnegative neural sparse coding. In this paper we will present new approach to NTF which is based on CANDENCOMP/PARAFAC model. The proposed method is simple, computationally effective, easily extensible to higher dimensional tensors, can handle some problems related to rank-deficient tensors and can be used for analysis of the higher dimensional tensors than most of the known algorithms for NTF.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
