
Due to the enormous advances made in semiconductor technology over the last few years, high integration densities with moderate costs are achievable even in the millimeter-wave (mm-wave) range and beyond, which encourage the development of imaging systems with a high number of channels. The mm-wave range lies between 30 and 300 GHz, with corresponding wavelengths between 10 and 1 mm. While imaging objects with signals of a few millimeters in wavelength, many optically opaque objects appear transparent, making mm-wave imaging attractive for a wide variety of commercial and scientific applications like nondestructive testing (NDT), material characterization, security scanning, and medical screening. The spatial resolution in lateral and range directions as well as the image dynamic range offered by an imaging system are considered the main measures of performance. With the availability of more channels combined with the powerful digital signal processing (DSP) capabilities of modern computers, the performance of mm-wave imaging systems is advancing rapidly.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 239 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
