
doi: 10.1109/mcg.2014.18
pmid: 24808163
The authors propose visual embedding as a model for automatically generating and evaluating visualizations. A visual embedding is a function from data points to a space of visual primitives that measurably preserves structures in the data (domain) within the mapped perceptual space (range). The authors demonstrate its use with three examples: coloring of neural tracts, scatterplots with icons, and evaluation of alternative diffusion tensor glyphs. They discuss several techniques for generating visual-embedding functions, including probabilistic graphical models for embedding in discrete visual spaces. They also describe two complementary approaches--crowdsourcing and visual product spaces--for building visual spaces with associated perceptual--distance measures. In addition, they recommend several research directions for further developing the visual-embedding model.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
