
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.1109/mc.2004.61
A University of California, Berkeley, researcher has developed a way to apply semiconductor dopants at the atomic level. Controlling the amount of dopant applied is increasingly important as the size of wires, diodes, transistors, switches, and other semiconductor elements approaches molecular scale. During semiconductor fabrication, manufacturers typically add dopants to semiconductor materials, such as silicon, to change their performance by altering their electrical properties. P-type doping adds elements such as boron or indium to remove electrons. N-type doping inserts elements such as arsenic, phosphorous, or potassium to add electrons. Currently, chip makers frequently add dopants in bulk to semiconductor materials. However, as the elements become smaller, the amount and placement of doping must become more precise.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
