
A novel method which is called the Chebyshev inertial iteration for accelerating the convergence speed of fixed-point iterations is presented. The Chebyshev inertial iteration can be regarded as a valiant of the successive over relaxation or Krasnosel'ski\v��-Mann iteration utilizing the inverse of roots of a Chebyshev polynomial as iteration dependent inertial factors. One of the most notable features of the proposed method is that it can be applied to nonlinear fixed-point iterations in addition to linear fixed-point iterations. Linearization around the fixed point is the key for the analysis on the local convergence rate of the proposed method. The proposed method appears effective in particular for accelerating the proximal gradient methods such as ISTA. It is also proved that the proposed method can successfully accelerate almost any fixed-point iterations if all the eigenvalues of the Jacobian at the fixed point are real.
9 pages
FOS: Computer and information sciences, Optimization and Control (math.OC), Computer Science - Information Theory, Information Theory (cs.IT), FOS: Mathematics, Mathematics - Optimization and Control
FOS: Computer and information sciences, Optimization and Control (math.OC), Computer Science - Information Theory, Information Theory (cs.IT), FOS: Mathematics, Mathematics - Optimization and Control
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
